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Abstract. We obtain a novel infinite parametric class of exact, stable travelling-wave 
solutions of the one-component, one-dimensional reaction diffusion equation by means of 
an inverse method. A number of explicit examples are worked out in terms of elementary 
functions. Some special cases of two-component, travelling-wave, reaction-diffusion prob- 
lems can be reduced to the one-component case and thus solved by our method. 

1. Introduction 

For many years mathematical biology and chemistry books have quoted the Fisher [ 11 
equation (1) as a more or less idealized model in genetics of populations, chemical 
kinetics, etc: 

dc(x, t ) / e t  = Dd2c(x, t ) / a x 2 + f ( c ( x ,  t ) ) .  

The term f(c) characterizes the rate of variation of concentration in the absence of 
diffusion. Kolmogorov et a1 [2] analysed the special case in which f(c) has roots at 
c = 0 , l  and is monotonically convex with a step-like initial condition. Recently, Freidlin 
[3], using the Feynman-Kac integral solution for Cauchy’s problem, provided a general 
wave solution of (1) restricted to slow reaction rates (f(c) - 0). Unlike [3], we pursue 
here an inverse solution for those cases in which the reaction rate is a ‘strong’ function 
of the local change in concentration. We provide an algorithm for some concrete 
problems. An example of this would be the spreading of an excitation in a medium 
[3] or the diffusion of reacting macromolecules in a medium (involving solvent) in 
which a localized reversible reaction occurs between the macromolecules. We obtain 
analytic expressions for the wavefront in the concentration, c(x+  u t ) ,  and for the 
reaction rate as a function of the concentration, f(c). We discuss the stability of the 
wave solutions, and construct parametric classes of them and consider generalizations 
to some multi-component systems. Our implicit solutions are expressible in quadratures 
and in a number of examples, involve only elementary transcendental functions. The 
propagation velocities can be either positive or negative, depending on the boundary 
condition which will be subsequently introduced. 
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2. Basic solution 

Consider a wave solution, of a leftward travelling wave with U > 0: 

c(x, t ) = 4 ( 5 )  ( = x + u t .  (2) 

The origin of the pattern is most simply fixed by requiring 

4”(0) = 0. 

u 4 ’ ( 5 )  = W’(O+.f(4(0) .  
Equation (1) now becomes 

For a wave solution, say from zero concentration (this level is merely a convenience) 
to a saturating concentration cM, we will want to have 

4 ( 0  + 0, 4Y5) + 0 

4(5) -3 C M ,  4 ’ ( 0  + 0 

as(+-Q: 

as 5-3 CD. 
( 5 )  

Since (4) is autonomous, one can carry out a standard degree-lowering transforma- 
tion by switching from the variables 4(5) and 5 to Y(4) and 4 where 

W4(5)) = 4YO. (6) 

Doing so, (4) reduces to 

V W 4 )  = DW+W’(4)+f(4) 
with associated conditions 

W 4 ) + 0  as 4 + 0  or 4 + c M .  

( 7 )  

It will also be convenient to choose that solution of (3) such that the absolute maximum 
of 4 is at 5 = 0; the corresponding value 

9” = W4(0)) (9) 

will serve as a reference. 
The equation (7 )  has known solutions [4] for special functions f(4),  but not with 

boundary conditions (8) .  One not very informative way of producing solutions to (4) 
is by total inversion of the problem: choose a solution +(e) and ask for that f which 
produces it; a similar procedure is available for (8). But one can instead go only part 
way towards triviality by supposing that f (4)  is known as a function of 9: 

f(4) = R(Wd)) (10) 

and afterwards find out what function f really is, and what concentration profile it 
produces. Hence we now have 

W 4 )  = D9(4)*’(4)+R(W4))  (11) 

which is directly solvable by reversing the roles of the variables Y and 4 ;  i.e. write 
4 = c(?),  so that (1 1) becomes 

~’(9) = DY/( UY - R ( Y ) ) .  (12) 

G(Y) = R(Y)/uY (13)  

Setting 
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puts (12) in the form 

~'(9) = D/v( l -  G ( 9 ) )  

and the boundary conditions (8) then become 

c(O)=O or cM. 

Hence G ( 9 )  must be at least a two-valued function. 
A non-dimensional form of (14), (15) is of course to be preferred. We set 

V* = V/90 U* = CMV/  DVO G*(V*) = G ( 9 )  

c*(**) = C ( T ) / C M  

so that now on the space 0 s V* s 1 we have 

U* dc*/d9* = 1/( 1 - G*(9*))  

c*(O) = 0 or 1 with c*( 1) single-valued. 

A simple example is instructive. Choose the familiar tanh profile, normalizing so 
t h a t c , = 1 a n d V 0 = l  ( h e n c e c * = c , 9 * = 9 ,  G*=G):  

4 ( 0 = t [ l + t a n h  ( 2 0 1  

4 = c ( 9 )  =i(l *t) 
then V(6) = sech2(2t), so 

hence c ' ( 9 )  = +1/(4-), and 

G ( 9 )  = 1 * ( 4 / v * ) m .  

This means that R ( 9 )  = v*V[ 1 f (4/u*)-], but V = 4 4 (  1 - 4 )  and so, choosing 
the correct sign, 

f ( ~ ) = 4 ~ * ~ ( 1 - ~ ) + 1 6 D ~ ( 1 - ~ ) ( 2 ~ - 1 ) .  (21) 
The two-valuedness of G is of course just a reflection of that of 4 = c(V).  

3. Local stability 

We now have a routine for producing reaction-rate profile pairs at a given propagation 
velocity o. But are these stable? Will they actually be achieved? These questions are 
not quite the same. One knows (mainly from the Fisher-Kolmogorov example) that 
if ( 5 )  is satisfied initially in time, then only a single characteristic velocity will asymptoti- 
cally propagate. Computer simulations on large finite systems come to the same 
conclusion. However, there is normally a whole band of velocities for which the solution 
is locally stable, i.e. to a linearized pertubation and hence to a superposition of local 
pertubations. Analysis of the latter effect does not require the analytic machinery that 
the former does, and so let us see what happens in our solution. We must be aware, 
of course, that changing U also changes our reaction function, so that when we assess 
the stability of a given parameterization, the band of U we may encounter is not the 
one ordinarily referred to. 

To assess the stability of a given solution 40(&) to ( 1 )  we, as usual, set 

c(x, t ) =  ~ , ( ~ + o t ) + e - " A ( x + u t )  (22) 
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where A is infinitesimal, obtaining 
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- DA"(5)+ uA'(5) - fY40( t )Mt)  = AN51 
A (  -CO) = 0 

Hence with y ( 5 )  = exp[-(u/2D)5]A(5) 

A(m) finite. 

- D Y " ( ~ )  + (u2/4D - f ( 4 0 ( 0 ) ) ~ ( t )  = A Y ( [ )  

d W d 4  = u + " ( t ) / 4 ' ( 5 )  - D4'"(5)/+'(5) 
Stability requires that all A > 0. Now R = uY - DTY', so 

and (24) becomes 

- Y " ( 5 )  +$(U/ D)*Y (0 + (+" ' (5 )  - u 4 " ( 5 ) /  DIY (5)/ 9'(5) = AY (5)/ D. (25) 
For large u/D,  clearly A > 0; for U = 0, A = 0 occurs (with y = &) and so A < 0 is 
possible. Hence, in general one expects a minimum velocity umin, above which local 
stability applies. 

4. A survey of solutions 

Let us look at a few more examples. Instead of (18) ,  choose 

+( 5) = 4+ ( I /  r) tan-'( r5). (26 )  
Then 9(5) = I / (  1 + r2t2), so 

+ = c ( * ) = + * ( ~ / r )  tan-'(-). 

Hence c ' ( 9 )  = 7(1/2r) /d(1 /9)  - 1 and 

G(Y)=l*2d(l-'€')/Y 

surprisingly similar to (20). 
Another example is 

so that 9( 5) = sech( rt), and 

Thus, c ' (9 )  = *( 1/ 7 r ) / m ,  and 

+ = c ( 9 )  = *(1/7r) sin-'(V). 

G ( 9 )  = l * r m  

also very similar to (20). 
It is not necessary to use analytic functions. Suppose 

+ ( ~ ) = + [ l + ( ~ - e - ' " ' )  sgn(t)l. 

+ = c ( 9 )  =$[l* ( 1  -9)J 

Now Y ( f )  = e-'"', and 

Hence c ' (9)  = and 

(32) 

(33) 

G(9) = -1,3. (34) 
The associated reaction rates can routinely be derived, but we will do this in a more 
general context. 
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5. Construction of parametric classes 

We now implement the inverse strategy. This calls for representing G*(q*)  of (17) 
parametrically, solving for the profile-which incidentally fixes u*-and also for the 
reaction rate. Fitting the latter to input information then allows determination of the 
consequent profile. 

It is clear from the examples of section 4 that an appropriate form is 

G*(V*) = 1 * g ( Y * ) m / 2  (35) 

u*ac*/aY* = *(2- g(Y*))-'. (36) 

for a suitable single-valued g, so that in (17) 

The form (35) will produce a symmetric profile; for asymmetry, one would, of course 
use g1/2 and -g2/2. If we set 

+=m (37) 

v*ac*/a+ = * i / g ( i  -I++'). (38) 

(36) simplifies to 

In terms of the new variable +, we have the conditions 
c*(O) is single-valued c*(l)  = 0 or 1. 

By integrating (38),  we see at once that c*(O) = 1 and that 
(39) 

Suppose, for example, that g(Y*) = a ( l +  bY*), 0 < b < 1, then 

v* = ? / [ a m ]  t a n h - ' m  (41) 
c*(+)  = f * i  tanh- 'Jb+/( l+ b ) / t a n h - ' m  

(42) =$.ti tanh-'Jb(1 -Y*) / ( l+  b ) / t a n h - ' m .  

Hence 

Y* = 1 - [( 1 + b)/ b] tanh2[(2c* - 1) tanh-l-1. (43) 
On the one hand, with c*(+*) = c$*(t) we have 

Y* = di$*/dt 

so that 

dS=dd* /{ l - [ ( l+  b)/b] tanh2[(2~*-1)  tanh-l-1) 

giving rise to the profile in the form 

t= - b ( 2 c $ * - 1 ) / 2 + ~ t t a n h - ' { ~ t a n h [ ( 2 c $ * - l )  
x tanh-'Jb/( 1 + b ) ] } / 2  tanh-'db/( 1 + b). 

On the other hand, f(c*) = u*Y*G(Y*) produces the reaction rate 

f(c*) = 2 tanh- 'Jb/( l+ b){b + 1 - (1 + l / b )  

x sinh2[(2c* - 1) tanh- 'db/(l+ b ) } / { m  
x cosh4[(2c* - 1) tanh- 'Jb/( l+ b)]} 

to which input data is to be fitted. 

(44) 

(45) 
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Another accessible example is 

g(Y*) = a v " F Z W  b>O 

then, following the steps above: 

U* = 2 sin-'-/(av'iTX) 
c* A*' sin-'J( b/ 1 + b)(  1 -**)/sin-'- 

Y * = l - [ ( l + b ) / b ]  s i n 2 [ ( 2 c * - 1 ) s i n - ' ~ ]  

(47) 

(48) 

giving rise to the profile and the reaction rate in the form 

sin[sin-'-(2$J* - l ) ]+v% cos[sin-'Jb/(l + b)(2$J* - l ) ]  
sin[sin- 'Jb/(l+ b)(2+* - l)] -a cos[sin- 'Jb/(l+ b)(24* - l)]  

,$=[( l+b) /4] ln  

(49) 

f( c*) = 2 s i n - ' ~ { c o s ' ( s i n - ' J b / (  1 + b)(2c*-')]( b + 1) - l} 

x { 1 - sin2[sin-'-(2c* - I)]}. 

6. Multicomponent systems 

There are circumstances under which multicomponent systems can be reduced to 
equivalent one-component form and hence can be tackled by the above technique. 
The most realistic case is that in which all components but one diffuse very rapidly, 
and hence are present uniformly in the system. Consider for example the two- 
component case 

4 = ~ l C ' l + f I ( C l ,  C A  (50a) 

d2 = d2C;)+f2(CZ, c2) (506) 

CAX,  t )  = Y(f). (51) 

r(t) = ( h ( C I ( X ,  t ) ,  r ( t ) ) ) x  ( 5 2 )  

c(x, t )  = d(5) ,$ = x + U t .  (53) 

(f'(+(O, r)>t = 0 (54) 

and suppose that D2 + CO, so that in a bounded system 

Averaging (50b)  over the system space, we have 

which must vanish in steady flow. But for wave propagation 

So we require the constant y to satisfy 

which, since fi = 0 in either high or low concentration plateau regions, is best written 
as 

00 1 f2(4(5), 7 )  d 5  = 0. 
-m 

It is (55), coupled with (50a) in the form 

( 5 5 )  
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which constitutes the self-consistent set to be solved. The procedure, following section 
5 ,  is clear but certainly depends upon the class of reaction rates to be examined. It 
may be noted in passing that the self-consistent determination ( 5 5 )  of y takes the 
procedure out of the realm of the purely mathematical models considered by Lefevre 
et a2 [ 5 , 6 ] .  However, it should also be noted that the solution (50a) ,  ( 5 5 )  is strictly 
valid only if y (  t )  varies slowly-behaves as a constant-on the timescale established 
by the velocity v and the width of the concentration profile. 

We mention another special case, alluded to in the introduction, in which two 
coupled reaction-diffusion equations possess travelling-wave solutions of the kind we 
have described. Consider a large macromolecule which has a small site which can exist 
in two states: 1,2.  The diffusion coefficient of both macromolecular species in some 
medium can then be taken to be identical: D1 = D2 = 0, determined only by the overall 
size and shape of the molecule. Denoting byfI2( c1, c2) the rate of conversion of species 
1 into species 2, the basic equations in y = x + u t  to be solved are 

v dc2ldy = - f12( ~ 1 ,  ~ 2 )  + D d2c2/dy2 

with boundary conditions on c2 such that c l (y)+ c2(y) = c,, a constant (i.e. c,(O)+ 
c2(0) = c,(co)+ cz(co) = c,). Then (57) reduces to (2) with fi2(c1, co- c,) =f(c,). 

7. Concluding remarks 

It has already been pointed out [7] that the Fisher-Kolmogorov equation and its 
generalizations are idealized and simplified models of some qualitative features of real 
genetic and chemical processes rather than a strict quantitative model of a specific 
experimental instance. This is of course true of our examples. A computerized literature 
search shows no chemical system which can be quantitatively analysed by this theory. 
Nevertheless it is still interesting to study the relation between the qualitative form of 
the reaction rate and the behaviour of the solution of (1) particularly if this can be 
done fairly explicitly with our class of inverse solutions. 
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